Pedicled bone flap formation using transplanted bone marrow stromal cells.
نویسندگان
چکیده
HYPOTHESIS Transplanted osteoprogenitor cells derived from cultured bone marrow stromal cells (BMSCs) can be used to fabricate pedicled bone flaps. DESIGN Prospective, randomized experimental trials. SETTING Basic science research laboratory. MATERIALS Immunodeficient female NIH-Bg-Nu-Xid mice, aged 3 months. INTERVENTION The BMSCs were harvested from the long bones of C57Bl/6 transgenic mice carrying the type Ialpha1 collagen-chloramphenicol acetyl transferase reporter gene construct; their numbers were expanded in tissue culture. Treated mice received BMSC transplantations around the common carotid artery and internal jugular vein, the aorta and its venae comitantes, or the saphenous artery and vein; control mice received a sham transplant in comparable recipient sites. MAIN OUTCOME MEASURES Mice underwent harvesting from 4 weeks to 2 years after transplantation. Transplants were evaluated via histological, immunohistochemical, and angiographic analyses. RESULTS Compared with the controls, which formed no bone, 32 of 37 BMSC-containing transplants formed a vascularized bone island that was perfused specifically and solely by its common carotid artery vascular source. Mature transplants consisted of well-developed lamellar, corticocancellous bone whose osteocytes were derived from the grafted BMSCs; hematopoietic tissue derived from the recipient mouse. Transplants formed as early as 4 weeks and remained stable in size as late as 108 weeks. CONCLUSIONS Bone marrow stromal cells can be used to create vascularized bone flaps in mice; these bone constructs are vascularized by their pedicle and therefore can potentially be transferred to a recipient site using microsurgical techniques. These findings provide proof of principle of an additional clinical application of BMSC transplantation techniques.
منابع مشابه
Induction of Mineralized Nodule Formation in Rat Bone Marrow Stromal Cell Cultures by Silk Fibroin
Background: Silk fibroin is a suitable protein for osteogenesis by inducing markers of bone formation in the cultures of osteoblasts, so we examined the ability of this protein to induce mineralized nodules in the rat bone marrow stromal cell cultures. Methods: Bone marrow stromal cells obtained from 4 to 6 weeks old Spruge-Dawely male rats were grown in primary culture for seven days and then ...
متن کاملImproved viability of random pattern skin flaps with the use of bone marrow mesenchymal-derived stem cells and chicken embryo extract
Objective(s): Covering tissue defects using skin flaps is a basic surgical strategy for plastic and reconstructive surgery. The aim of this study was to evaluate the effects of chicken embryo extract (CEE) and bone marrow derived mesenchymal stem cells (BM-MSCs) on random skin flap survival (RSF) in rats. Using chicken embryo extract can be an ideal environment for the growth and proliferation ...
متن کاملBone marrow stromal cells and their application in neural injuries
Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...
متن کاملThe effect of intrathecal delivery of bone marrow stromal cells on hippocampal neurons in rat model of Alzheimer’s disease
Objective(s): Intracerebral injection of bone marrow stromal cells (BMSCs) is being investigated as a therapeutic tool to prevent Alzheimer's disease (AD). Our aim was to investigate the effects of BMSCs by intrathecal injection in AD rat model. Materials and Methods: BMSCs were obtained from the bone marrow of Wistar rat and transplanted into AD rat model via intrathecal injection. The rat mod...
متن کاملMorphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space
Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Archives of surgery
دوره 136 3 شماره
صفحات -
تاریخ انتشار 2001